

Antibiotic Susceptibility-Testing based on nanofluidic cell immobilization and growth detection in an optofluidic system

Ann-Kathrin Klein Institute of Microtechnology, Technische Universität Braunschweig

Motivation

- Drug resistance on the rise
- Misuse of antibotics

- Broadband antibiotics
- Only for emergencies

• Fast and PoC diagnosis

Ann-Kathrin Klein | Slide 2 Antibiotic Susceptibility-Testing based on nanofluidic cell immobilization and growth detection in an optofluidic system

State of the Art

Ann-Kathrin Klein | Slide 3 Antibiotic Susceptibility-Testing based on nanofluidic cell immobilization and growth detection in an optofluidic system

https://www.biomerieuxusa.com/ https://www.bd.com, https://media.beckmancoulter.com

Measuring principle

Ann-Kathrin Klein | Slide 4

Immobilization principle

reference- and detection channel: 3 μm × 4 μm distance: 3 μm length: 296 μm nanogap: 590 nm feeding channels: 50 μm × 50 μm

Ann-Kathrin Klein | Slide 5 Antibiotic Susceptibility-Testing based on nanofluidic cell immobilization and growth detection in an optofluidic system

Experimental procedure

Ann-Kathrin Klein | Slide 6 Antibiotic Susceptibility-Testing based on nanofluidic cell immobilization and growth detection in an optofluidic system

GFP-measuring

Ann-Kathrin Klein | Slide 7 Antibiotic Susceptibility-Testing based on nanofluidic cell immobilization and growth detection in an optofluidic system

Results

Optofluidic grating principle

24 detection channel 3 μ m × 4 μ m 24 reference channel 3 μ m × 4 μ m nanogap 590 nm × 296 μ m feeding channel 50 × 50 μ m

Ann-Kathrin Klein | Slide 9 Antibiotic Susceptibility-Testing based on nanofluidic cell immobilization and growth detection in an optofluidic system

GFP-measuring

Ann-Kathrin Klein | Slide 10

Refractive index measurement

Ann-Kathrin Klein | Slide 11 Antibiotic Susceptibility-Testing based on nanofluidic cell immobilization and growth detection in an optofluidic system

Susceptibility Test

Ann-Kathrin Klein | Slide 12 Antibiotic Susceptibility-Testing based on nanofluidic cell immobilization and growth detection in an optofluidic system

Summary

Ann-Kathrin Klein | Slide 13 Antibiotic Susceptibility-Testing based on nanofluidic cell immobilization and growth detection in an optofluidic system

Motivation

Ann-Kathrin Klein | Slide 14 Antibiotic Susceptibility-Testing based on nanofluidic cell immobilization and growth detection in an optofluidic system

Motivation

Time Preceding Hospitalization (Days)

Ann-Kathrin Klein | Slide 15

Antibiotic Susceptibility-Testing based on nanofluidic cell immobilization and growth detection in an optofluidic system

Graph adapted from Adampson PB, et al. Curr Heart Fail Reports, 2009.

ForMat-CARDIO - Long-term cardiovascular implant

ForMat-CARDIO - Long-term cardiovascular implant

Thank you for your attention!

The results of the BmBF-funded KeimOut-project were achieved by the Institute of Microtechnology of the Technische Universität Braunschweig research group Andreas Dietzel (project collaborator: Jan Busche) in cooperation with the research group Thomas Burg "Integrated Micro-Nano-Systems" of the Technische Universität Darmstadt.

The results of the BmBF-funded ForMat-CARDIO-project were achieved in cooperation with the company NanoScale systems GmbH and Claus Burkhardt of the NMI Natural and Medical Sciences Institute at the University of Tübingen.

