

Estimation of forces and displacements during brain surgery using medical phantoms

R. Catena¹, K.L. Krajewski², C. Damiani¹

¹ Medical Sensors and Devices Laboratory, Lübeck University of Applied Sciences (THL), Lübeck, Germany
² Altonaer Childrens Hospital, Hamburg, Germany

Introduction

Goals of this work:

- 1. Building a setup to estimate the range of forces and deformations applied to brain tissue during surgery.
- 2. Test the setup performing manual indentation on a brain-mimicking silicone sample with surgical tools.

• Motivation:

Estimating force and deformation ranges during surgery is a requirement for the design of a tactile device for in-vivo brain stiffness evaluation.

Those ranges are needed to constrain the choice of sensors during the device design process.

Why brain stiffness?

- Better computational models investigating injury and disease development
- 2) Improvement of surgical procedures
- 3) Objective measures to evaluate trauma/pathological conditions

Why a tactile device for brain stiffness measurement?

Currently, the only available method for in-vivo brain stiffness assessment is magnetic resonance elastography (MRE). MRE is not reliable enough to be considered gold standard and cannot be performed during surgery.

Design

- Force measurement: LEYBOLD® 524 060 uniaxial force sensor
- Analog-Digital force conversion: LEYBOLD® 524010 Sensor-CASSY connected to computer.

- <u>Deformation measurement</u>: indirect, Kinovea software used to analyze footage obtained with iPhone 12 mini (182.79fps). Calibration grid used to set scale.
- Force-deformation data synchronization: trigger circuit manufactured in laboratory with LED positioned in the frame.
- Surgical tools to deform the samples: bipolar forceps and dissector

Figure 1. Complete view of the setup: force sensor (A), sample holder with sample (B), phone holder (C), calibration grid (D) and LED (E)

Methods

- 2 tactile tests were carried out on a silicone sample by two neurosurgeons using surgical tools.
- Synchronized force and deformation data were obtained and analyzed in MATLAB®.

Displacement - cm - Force - N N - Solution N - O.5 -1.5 O 0.5 1 1.5 2 2.5 Time - s

Results

- Compressive force range: 0 1.063 N
- Tissue deformation range: 0 2.97 mm

Figure 2. Plot of force and displacement. Negative displacements indicate deformation of sample due to compressive load. Negative force values are used to indicate compressive load.

Discussion

- Deformation peaks anticipate force peaks by approximately 0.1 s. Possible cause: compliance of sensor and inertia of sample. Further tests are needed to confirm hypothesis.
- Additional experiments with more surgeons and optimized measurement conditions are needed.

References

[1] S. Budday, T. C. Ovaert, G. A. Holzapfel, P. Steinmann, and E. Kuhl, "Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue," Archives of Computational Methods in Engineering, vol. 27, pp. 1187–1230, Sept. 2020.

Corresponding author

Christian Damiani
Lübeck University of Applied Sciences (THL)
Medical Sensors and Devices Laboratory
Mönkhofer Weg 239, 23562 Lübeck, Germany
christian.damiani@th-luebeck.de

Acknowledgement
We thank Dr. Michael Worsch for participating to the experiment.